In vitro metabolism of isoliquiritigenin by human liver microsomes.
نویسندگان
چکیده
Isoliquiritigenin (2',4',4-trihydroxychalcone), a chalcone found in licorice root and other plants, has shown potent antitumor, antioxidant, and phytoestrogenic activity in vitro. In preparation for in vivo studies, the metabolism of isoliquiritigenin by human liver microsomes was investigated, and seven phase 1 metabolites were identified. In addition to aromatic hydroxylation that occurred on the A or B ring to form 2',4,4',5'-tetrahydroxychalcone or butein, respectively, reduction of the carbon-carbon double bond of an alpha,beta-unsaturated ketone and cyclization occurred to form 2',4,4'-trihydroxydihydrochalcone and (Z/E)-6,4'-dihydroxyaurone. All metabolites were characterized and identified by using liquid chromatography-tandem mass spectrometry with comparison to authenticated compounds. Finally, monoclonal antibody inhibitors of specific human cytochrome P450 (P450) enzymes and recombinant human P450 enzymes were used to identify the enzymes responsible for the formation of the major mono-oxygenated metabolites, and P450 2C19 was found to be a significant enzyme in the formation of butein from isoliquiritigenin, which also has anticancer activity. Cytochromes P450, reactive oxygen species, and peroxidases can all contribute to the formation of (Z/E)-6,4'-dihydroxyaurone in human liver microsomes.
منابع مشابه
Preparation, properties and preclinical pharmacokinetics of low molecular weight heparin-modified isoliquiritigenin-loaded solid lipid nanoparticle
Low molecular weight heparin-modified isoliquiritigenin-loaded solid lipid nanoparticle (LMWH-ISL-SLN) was developed for injective application. The morphological observation, particle diameter and zeta potential of LMWH-ISL-SLN were characterized using transmission electron microscopy (TEM) and a Malvern Zetasizer. Its entrapment efficiency (EE) and drug loading (DL) were determined by ultracen...
متن کاملPreparation, properties and preclinical pharmacokinetics of low molecular weight heparin-modified isoliquiritigenin-loaded solid lipid nanoparticle
Low molecular weight heparin-modified isoliquiritigenin-loaded solid lipid nanoparticle (LMWH-ISL-SLN) was developed for injective application. The morphological observation, particle diameter and zeta potential of LMWH-ISL-SLN were characterized using transmission electron microscopy (TEM) and a Malvern Zetasizer. Its entrapment efficiency (EE) and drug loading (DL) were determined by ultracen...
متن کاملIn vitro metabolism of the HIV-1 protease inhibitor ABT-378: species comparison and metabolite identification.
HIV protease inhibitor ABT-378 (ABT-378) was metabolized very extensively and rapidly by liver microsomes from mouse, rat, dog, monkey, and humans. The rates of NADPH-dependent metabolism of ABT-378 ranged from 2.39 to 9.80 nmol.mg microsomal protein-1.min-1, with monkey liver microsomes exhibiting the highest rates of metabolism. ABT-378 was metabolized to 12 metabolites (M-1 to M-12), which w...
متن کاملVoriconazole inhibition of the metabolism of tacrolimus in a liver transplant recipient and in human liver microsomes.
The purpose of this study was to assess the effect of voriconazole on the blood tacrolimus concentration in a liver transplant recipient and to examine the interaction between voriconazole and tacrolimus by using human liver microsomes. Two subjects were enrolled in the clinical study: one received voriconazole, and the other received a placebo. Tacrolimus metabolism was evaluated in human live...
متن کاملCytochrome P450 2C8 and flavin-containing monooxygenases are involved in the metabolism of tazarotenic acid in humans.
Upon oral administration, tazarotene is rapidly converted to tazarotenic acid by esterases. The main circulating agent, tazarotenic acid is subsequently oxidized to the inactive sulfoxide metabolite. Therefore, alterations in the metabolic clearance of tazarotenic acid may have significant effects on its systemic exposure. The objective of this study was to identify the human liver microsomal e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 36 2 شماره
صفحات -
تاریخ انتشار 2008